segunda-feira, 22 de julho de 2019


dentro de um sistema de tunelamento inserido de fótons, temperatura, radioatividades se tem variações de:

variações de: estruturas, energias, fenômenos e dimensões fenomênicas Graceli =

conforme os agentes e o SDCTI GRACELI -CADEIAS DE INTERAÇÕES E DIMENSÕES FENOMÊNICAS.



radioatividade (AO 1945: radioactividade) (também chamado de radiatividade (AO 1945: radiactividade)) é um fenômeno natural ou artificial, pelo qual algumas substâncias ou elementos químicos, chamados radioativos, são capazes de emitir radiações,[1] as quais têm a propriedade de impressionar placas fotográficas, ionizar gases, produzir fluorescência e atravessar corpos opacos à luz. As radiações emitidas pelas substâncias radioativas são principalmente partículas alfapartículas beta e raios gama. A radioatividade é uma forma de energia nuclear, usada em medicina (radioterapia), e consiste no fato de alguns átomos como os do urâniorádio e tório serem “instáveis”, perdendo constantemente partículas alfa, beta e gama (raios-X). O urânio, por exemplo, tem 92 prótons, porém através dos séculos vai perdendo-os na forma de radiações, até terminar em chumbo, com 82 prótons estáveis. Foi observada pela primeira vez pelo francês Henri Becquerel em 1896 enquanto trabalhava em materiais fosforescentes.[2]
A radioatividade pode ser:
  • Radioatividade natural ou espontânea: É a que se manifesta nos elementos radioativos e nos isótopos que se encontram na natureza e poluem o meio ambiente.
  • Radioatividade artificial ou induzida: É aquela que é provocada por transformações nucleares artificiais.

    Visão geral[editar | editar código-fonte]

    O fenômeno da desintegração espontânea do núcleo de um átomo com a emissão de algumas radiações é chamado de radioatividade. A radioatividade transforma núcleos instáveis fazendo surgir as radiações α, β e γ.
    A lei fundamental do decaimento radioativo afirma que a taxa de decaimento é proporcional ao número de núcleos que ainda não decaíram:
    Esta é a equação da lei básica para a radioatividade.
    A medida da intensidade da radioatividade é feita em duas unidades que são:
    • Curie: Definido como a quantidade de material radioativo que
    dá  desintegrações por segundo.
    • Rutherford (Rd): é definido como a quantidade de substância radioativa que dá  desintegrações por segundo.
    Na natureza existem elementos radioativos que exibem transformação sucessiva, isto é, um elemento decai em substância radioativa que também é radioativa. Na transformação radioativa sucessiva, se o número de nuclídeos qualquer membro da cadeia é constante e não muda com o tempo, é chamado em equilíbrio radioativo.[3] A condição de equilíbrio é portanto:
    ou
    .
    Onde os subscritos P, D e G indicam núcleo-pai (do Inglês parent), núcleo-filha (do Inglês daughter) e núcleo-neta (do Inglês granddaughter) respectivamente.
    O estudo da radioatividade e radioisótopos tem várias aplicações na ciência e tecnologia. Algumas delas são:
    1. Determinação da idade de materiais antigos com auxílio de elementos radioativos.
    2. Análises para obtenção de vestígios de elementos.
    3. Aplicações médicas como diagnóstico e tratamento.


    Uma analogia comumente utilizada para explicar tal fenômeno envolve uma colina e um trenó subindo em direção ao cume da colina. Imaginando que o trenó esteja subindo a colina, parte de sua energia cinética que se transforma em energia potencial gravitacional U. Quando o cume da colina é atingido, podemos pensar que o trenó tem energia potencial Ub. Se a energia mecânica inicial E do trenó for maior que Ub, o trenó poderá chegar do outro lado da colina. Contudo, se E for menor que Ub, a física clássica garante que não existe a possibilidade de o trenó ser encontrado do outro lado da colina. Na mecânica quântica, porém, existe uma probabilidade finita de que esse trenó apareça do outro lado, movendo-se para direita com energia E como se nada tivesse acontecido. Dizemos que a colina se comporta como uma barreira de energia potencial, exemplificando de maneira simplória o efeito Túnel.[6]
    Reflexão e tunelamento através de uma barreira potencial por um pacote de ondas. Uma parte do pacote de ondas passa através da barreira, o que não é possível pela física clássica.
    Considerando um elétron e a densidade de probabilidade  da onda de matéria associada a ele, podemos pensar em três regiões: antes da barreira potencial (região I), a região de largura L da barreira (região II) e uma região posterior à barreira (região III). A abordagem da mecânica quântica é baseada na equação de Schrödinger, a qual tem solução para todas as 3 regiões. Nas regiões I e III, a solução é uma equação senoidal, enquanto na segunda - a solução é uma função exponencial. Nenhuma das probabilidades é zero, embora na região III a probabilidade seja bem baixa.[2]
    O coeficiente de transmissão (T) de uma determinada barreira é definido como uma fração dos elétrons que conseguem atravessá-la. Assim, por exemplo, se T= 0,020, isso significa que para cada 1000 elétrons que colidem com a barreira, 20 elétrons (em média) a atravessam e 980 são refletidos.
     , 
    Por causa da forma exponencial da equação acima, o valor de T é muito sensível às três variáveis de que depende: a massa m da partícula, a largura L da barreira e a diferença de energia de Ub-E entre a energia máxima da barreira e a energia da partícula. Constatamos também pelas equações que T nunca pode ser zero.[6]




    Analisando o efeito fotoelétrico quantitativamente usando o método de Einstein, as seguintes equações equivalentes são usadas:
    Energia do fóton = Energia necessária para remover um elétron + Energia cinética do elétron emitido
    Mais detalhes em: Energia do fóton
    Algebricamente:
    Onde:
    • h é a constante de Planck,
    • f é a frequência do foton incidente,
    •  é a função trabalho, ou energia mínima exigida para remover um elétron de sua ligação atômica,
    •  é a energia cinética máxima dos elétrons expelidos,
    • f0 é a frequência mínima para o efeito fotoelétrico ocorrer,
    • m é a massa de repouso do elétron expelido, e
    • vm é a velocidade dos elétrons expelidos.
    Notas:
    Se a energia do fóton (hf) não é maior que a função trabalho (), nenhum elétron será emitido. A função trabalho é ocasionalmente designada por .
    Em física do estado sólido costuma-se usar a energia de Fermi e não a energia de nível de vácuo como referencial nesta equação, o que faz com que a mesma adquira uma forma um pouco diferente.
    Note-se ainda que ao aumentar a intensidade da radiação incidente não vai causar uma maior energia cinética dos elétrons (ou electrões) ejectados, mas sim um maior número de partículas deste tipo removidas por unidade de tempo.

    variações de estruturas, energias, fenômenos e dimensões fenomênicas Graceli =

    x

    T x


      x 

     , 

    x



    x


    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D